Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Neural Eng ; 21(3)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38722308

RESUMO

Objective. This study aims to develop and validate an end-to-end software platform, PyHFO, that streamlines the application of deep learning (DL) methodologies in detecting neurophysiological biomarkers for epileptogenic zones from EEG recordings.Approach. We introduced PyHFO, which enables time-efficient high-frequency oscillation (HFO) detection algorithms like short-term energy and Montreal Neurological Institute and Hospital detectors. It incorporates DL models for artifact and HFO with spike classification, designed to operate efficiently on standard computer hardware.Main results. The validation of PyHFO was conducted on three separate datasets: the first comprised solely of grid/strip electrodes, the second a combination of grid/strip and depth electrodes, and the third derived from rodent studies, which sampled the neocortex and hippocampus using depth electrodes. PyHFO demonstrated an ability to handle datasets efficiently, with optimization techniques enabling it to achieve speeds up to 50 times faster than traditional HFO detection applications. Users have the flexibility to employ our pre-trained DL model or use their EEG data for custom model training.Significance. PyHFO successfully bridges the computational challenge faced in applying DL techniques to EEG data analysis in epilepsy studies, presenting a feasible solution for both clinical and research settings. By offering a user-friendly and computationally efficient platform, PyHFO paves the way for broader adoption of advanced EEG data analysis tools in clinical practice and fosters potential for large-scale research collaborations.


Assuntos
Aprendizado Profundo , Eletroencefalografia , Eletroencefalografia/métodos , Eletroencefalografia/instrumentação , Animais , Ratos , Algoritmos , Epilepsia/fisiopatologia , Epilepsia/diagnóstico , Software , Humanos , Hipocampo/fisiologia
2.
Epilepsia ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662128

RESUMO

OBJECTIVE: Although the clinical efficacy of deep brain stimulation targeting the anterior nucleus (AN) and centromedian nucleus (CM) of the thalamus has been actively investigated for the treatment of medication-resistant epilepsy, few studies have investigated dynamic ictal changes in corticothalamic connectivity in human electroencephalographic (EEG) recording. This study aims to establish the complex spatiotemporal dynamics of the ictal corticothalamic network associated with various seizure foci. METHODS: We analyzed 10 patients (aged 2.7-28.1 years) with medication-resistant focal epilepsy who underwent stereotactic EEG evaluation with thalamic sampling. We examined both undirected and directed connectivity, incorporating coherence and spectral Granger causality analysis (GCA) between the diverse seizure foci and thalamic nuclei (AN and CM) at ictal onset. RESULTS: In our analysis of 36 seizures, coherence between seizure onset and thalamic nuclei increased across all frequencies, especially in slower bands (delta, theta, alpha). GCA showed increased information flow from seizure onset to the thalamus across all frequency bands, but outflows from the thalamus were mainly in slower frequencies, particularly delta. In the subgroup analysis based on various seizure foci, the delta coherence showed a more pronounced increase at CM than at AN during frontal lobe seizures. Conversely, in limbic seizures, the delta coherence increase was greater at AN compared to CM. SIGNIFICANCE: It appears that the delta frequency plays a pivotal role in modulating the corticothalamic network during seizures. Our results underscore the significance of comprehending the spatiotemporal dynamics of the corticothalamic network at ictal onset, and this knowledge could guide personalized responsive neuromodulation treatment strategies.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38679750

RESUMO

CONTEXT: Use of artificial intelligence (AI) to predict clinical outcomes in thyroid nodule diagnostics has grown exponentially over the past decade. The greatest challenge is in understanding the best model to apply to one's own patient population, and how to operationalize such a model in practice. EVIDENCE ACQUISITION: A literature search of PubMed and IEEE Xplore was conducted for English language publications between January 1, 2015 and January 1, 2023 studying diagnostic tests on suspected thyroid nodules that utilized AI. We excluded articles without prospective or external validation, non-primary literature, duplicates, focused on non-nodular thyroid conditions, not using AI, and those incidentally utilizing AI in support of an experimental diagnostic outside standard clinical practice. Quality was graded by Oxford level of evidence. EVIDENCE SYNTHESIS: A total of 61 studies were identified; all performed external validation, sixteen studies were prospective, and 33 compared a model to physician prediction of ground truth. Statistical validation was reported in 50 papers. A diagnostic pipeline was abstracted, yielding five high-level outcomes: (1) nodule localization, (2) ultrasound risk score, (3) molecular status, (4) malignancy, and (5) long-term prognosis. Seven prospective studies validated a single commercial AI; strengths included automating nodule feature assessment from ultrasound and assisting the physician in predicting malignancy risk, while weaknesses included automated margin prediction and inter-observer variability. CONCLUSIONS: Models predominantly used ultrasound images to predict malignancy. Of four FDA-approved products, only S-Detect was extensively validated. Implementing an AI model locally requires data sanitization and re-validation to ensure appropriate clinical performance.

4.
Appl Clin Inform ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38382633

RESUMO

BACKGROUND: Heart failure is a complex clinical syndrome noted on approximately 1 in 8 death certificates in the United States. Vital to reducing complications of heart failure and preventing hospital readmissions is adherence to heart failure self-care routines. Mobile health offers promising opportunities for enhancing self-care behaviors by facilitating tracking and timely reminders. OBJECTIVE: We sought to investigate three characteristics of heart failure patients with respect to their heart failure self-care behaviors: (1) internet use to search for heart failure information; (2) familiarity with mobile health apps and devices; and (3) perceptions of using activity trackers or smartwatches to aid in their heart failure self-care. METHODS: Forty-nine heart failure patients were asked about their internet and mobile health usage. The structured interview included questions adapted from the Health Information National Trends Survey. RESULTS: Over 50% of the patients had utilized the internet to search for heart failure information in the past 12 months, experience using health-related apps, and thoughts that an activity tracker or smartwatch could help them manage heart failure. Qualitative analysis of the interviews revealed six themes: trust in their physicians, alternatives to mobile health apps, lack of need for mobile health devices, financial barriers to activity tracker and smartwatch ownership, benefits of tracking and reminders, and uncertainty of their potential due to lack of knowledge. CONCLUSIONS: Trust in their physicians was a major factor for heart failure patients who reported not searching for health information on the internet. While those who used mobile health technologies found them useful, patients who did not use them were generally unaware of or unknowledgeable about them. Considering patients' preferences for recommendations from their physicians and tendency to search for heart failure information including treatment and management options, patient-provider discussions about mobile health may improve patient knowledge and impact their usage.

5.
Comput Biol Med ; 170: 107974, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244471

RESUMO

An increase in the incidence and diagnosis of thyroid nodules and thyroid cancer underscores the need for a better approach to nodule detection and risk stratification in ultrasound (US) images that can reduce healthcare costs, patient discomfort, and unnecessary invasive procedures. However, variability in ultrasound technique and interpretation makes the diagnostic process partially subjective. Therefore, an automated approach that detects and segments nodules could improve performance on downstream tasks, such as risk stratification. Ultrasound studies were acquired from 280 patients at UCLA Health, totaling 9888 images, and annotated by collaborating radiologists. Current deep learning architectures for segmentation are typically semi-automated because they are evaluated solely on images known to have nodules and do not assess ability to identify suspicious images. However, the proposed multitask approach both detects suspicious images and segments potential nodules; this allows for a clinically translatable model that aptly parallels the workflow for thyroid nodule assessment. The multitask approach is centered on an anomaly detection (AD) module that can be integrated with any UNet architecture variant to improve image-level nodule detection. Of the evaluated multitask models, a UNet with a ImageNet pretrained encoder and AD achieved the highest F1 score of 0.839 and image-wide Dice similarity coefficient of 0.808 on the hold-out test set. Furthermore, models were evaluated on two external validations datasets to demonstrate generalizability and robustness to data variability. Ultimately, the proposed architecture is an automated multitask method that expands on previous methods by successfully both detecting and segmenting nodules in ultrasound.


Assuntos
Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Ultrassonografia/métodos
6.
Front Med (Lausanne) ; 10: 1270570, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908848

RESUMO

Introduction: Limbal Stem Cell Deficiency (LSCD) is a blinding corneal disease characterized by the loss of function or deficiency in adult stem cells located at the junction between the cornea and the sclera (i.e., the limbus), namely the limbal stem cells (LSCs). Recent advances in in vivo imaging technology have improved disease diagnosis and staging to quantify several biomarkers of in vivo LSC function including epithelial thickness measured by anterior segment optical coherence tomography, and basal epithelial cell density and subbasal nerve plexus by in vivo confocal microscopy. A decrease in central corneal sub-basal nerve density and nerve fiber and branching number has been shown to correlate with the severity of the disease in parallel with increased nerve tortuosity. Yet, image acquisition and manual quantification require a high level of expertise and are time-consuming. Manual quantification presents inevitable interobserver variability. Methods: The current study employs a novel deep learning approach to classify neuron morphology in various LSCD stages and healthy controls, by integrating images created through latent diffusion augmentation. The proposed model, a residual U-Net, is based in part on the InceptionResNetV2 transfer learning model. Results: Deep learning was able to determine fiber number, branching, and fiber length with high accuracy (R2 of 0.63, 0.63, and 0.80, respectively). The model trained on images generated through latent diffusion on average outperformed the same model when trained on solely original images. The model was also able to detect LSCD with an AUC of 0.867, which showed slightly higher performance compared to classification using manually assessed metrics. Discussion: The results suggest that utilizing latent diffusion to supplement training data may be effective in bolstering model performance. The results of the model emphasize the ability as well as the shortcomings of this novel deep learning approach to predict various nerve morphology metrics as well as LSCD disease severity.

7.
medRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662245

RESUMO

Objective: Although the clinical efficacy of deep brain stimulation targeting the anterior nucleus (AN) and centromedian nucleus (CM) of the thalamus has been actively investigated for the treatment of medication-resistant epilepsy, few studies have investigated dynamic ictal changes in corticothalamic connectivity in human EEG recording. This study aims to establish the complex spatiotemporal dynamics of the ictal corticothalamic network associated with various seizure foci. Methods: We analyzed ten patients (aged 2.7-28.1) with medication-resistant focal epilepsy who underwent stereotactic EEG evaluation with thalamic coverage. We examined both undirected and directed connectivity, incorporating coherence and spectral Granger causality analysis (GCA) between the diverse seizure foci and thalamic nuclei (AN and CM). Results: In our analysis of 36 seizures, coherence between seizure onset and thalamic nuclei increased across all frequencies, especially in slower bands (delta, theta, alpha). GCA showed increased information flow from seizure onset to the thalamus across all frequency bands, but outflows from the thalamus were mainly in slower frequencies, particularly delta. In the subgroup analysis based on various seizure foci, the delta coherence showed a more pronounced increase at CM than at AN during frontal lobe seizures. Conversely, in limbic seizures, the delta coherence increase was greater at AN compared to CM. Interpretation: It appears that the delta frequency plays a pivotal role in modulating the corticothalamic network during seizures. Our results underscore the significance of comprehending the spatiotemporal dynamics of the corticothalamic network during seizures, and this knowledge could guide personalized neuromodulation treatment strategies.

8.
Clin Neurophysiol ; 154: 129-140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37603979

RESUMO

OBJECTIVE: This study aimed to explore sensitive detection methods for pathological high-frequency oscillations (HFOs) to improve seizure outcomes in epilepsy surgery. METHODS: We analyzed interictal HFOs (80-500 Hz) in 15 children with medication-resistant focal epilepsy who underwent chronic intracranial electroencephalogram via subdural grids. The HFOs were assessed using the short-term energy (STE) and Montreal Neurological Institute (MNI) detectors and examined for spike association and time-frequency plot characteristics. A deep learning (DL)-based classification was applied to purify pathological HFOs. Postoperative seizure outcomes were correlated with HFO-resection ratios to determine the optimal HFO detection method. RESULTS: The MNI detector identified a higher percentage of pathological HFOs than the STE detector, but some pathological HFOs were detected only by the STE detector. HFOs detected by both detectors had the highest spike association rate. The Union detector, which detects HFOs identified by either the MNI or STE detector, outperformed other detectors in predicting postoperative seizure outcomes using HFO-resection ratios before and after DL-based purification. CONCLUSIONS: HFOs detected by standard automated detectors displayed different signal and morphological characteristics. DL-based classification effectively purified pathological HFOs. SIGNIFICANCE: Enhancing the detection and classification methods of HFOs will improve their utility in predicting postoperative seizure outcomes.


Assuntos
Aprendizado Profundo , Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Humanos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Convulsões , Eletroencefalografia/métodos , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia
9.
medRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131743

RESUMO

Objective: This study aimed to explore sensitive detection methods and deep learning (DL)-based classification for pathological high-frequency oscillations (HFOs). Methods: We analyzed interictal HFOs (80-500 Hz) in 15 children with medication-resistant focal epilepsy who underwent resection after chronic intracranial electroencephalogram via subdural grids. The HFOs were assessed using the short-term energy (STE) and Montreal Neurological Institute (MNI) detectors and examined for pathological features based on spike association and time-frequency plot characteristics. A DL-based classification was applied to purify pathological HFOs. Postoperative seizure outcomes were correlated with HFO-resection ratios to determine the optimal HFO detection method. Results: The MNI detector identified a higher percentage of pathological HFOs than the STE detector, but some pathological HFOs were detected only by the STE detector. HFOs detected by both detectors exhibited the most pathological features. The Union detector, which detects HFOs identified by either the MNI or STE detector, outperformed other detectors in predicting postoperative seizure outcomes using HFO-resection ratios before and after DL-based purification. Conclusions: HFOs detected by standard automated detectors displayed different signal and morphological characteristics. DL-based classification effectively purified pathological HFOs. Significance: Enhancing the detection and classification methods of HFOs will improve their utility in predicting postoperative seizure outcomes. HIGHLIGHTS: HFOs detected by the MNI detector showed different traits and higher pathological bias than those detected by the STE detectorHFOs detected by both MNI and STE detectors (the Intersection HFOs) were deemed the most pathologicalA deep learning-based classification was able to distill pathological HFOs, regard-less of the initial HFO detection methods.

10.
JMIR Form Res ; 7: e43107, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37017471

RESUMO

BACKGROUND: The increasing use of activity trackers in mobile health studies to passively collect physical data has shown promise in lessening participation burden to provide actively contributed patient-reported outcome (PRO) information. OBJECTIVE: The aim of this study was to develop machine learning models to classify and predict PRO scores using Fitbit data from a cohort of patients with rheumatoid arthritis. METHODS: Two different models were built to classify PRO scores: a random forest classifier model that treated each week of observations independently when making weekly predictions of PRO scores, and a hidden Markov model that additionally took correlations between successive weeks into account. Analyses compared model evaluation metrics for (1) a binary task of distinguishing a normal PRO score from a severe PRO score and (2) a multiclass task of classifying a PRO score state for a given week. RESULTS: For both the binary and multiclass tasks, the hidden Markov model significantly (P<.05) outperformed the random forest model for all PRO scores, and the highest area under the curve, Pearson correlation coefficient, and Cohen κ coefficient were 0.750, 0.479, and 0.471, respectively. CONCLUSIONS: While further validation of our results and evaluation in a real-world setting remains, this study demonstrates the ability of physical activity tracker data to classify health status over time in patients with rheumatoid arthritis and enables the possibility of scheduling preventive clinical interventions as needed. If patient outcomes can be monitored in real time, there is potential to improve clinical care for patients with other chronic conditions.

11.
PLoS One ; 18(3): e0282882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928721

RESUMO

Medical natural language processing (NLP) systems are a key enabling technology for transforming Big Data from clinical report repositories to information used to support disease models and validate intervention methods. However, current medical NLP systems fall considerably short when faced with the task of logically interpreting clinical text. In this paper, we describe a framework inspired by mechanisms of human cognition in an attempt to jump the NLP performance curve. The design centers on a hierarchical semantic compositional model (HSCM), which provides an internal substrate for guiding the interpretation process. The paper describes insights from four key cognitive aspects: semantic memory, semantic composition, semantic activation, and hierarchical predictive coding. We discuss the design of a generative semantic model and an associated semantic parser used to transform a free-text sentence into a logical representation of its meaning. The paper discusses supportive and antagonistic arguments for the key features of the architecture as a long-term foundational framework.


Assuntos
Semântica , Software , Humanos , Big Data , Processamento de Linguagem Natural
12.
medRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36778410

RESUMO

An increase in the incidence and diagnosis of thyroid nodules and thyroid cancer underscores the need for a better approach to nodule detection and risk stratification in ultrasound (US) images that can reduce healthcare costs, patient discomfort, and unnecessary invasive procedures. However, variability in ultrasound technique and interpretation makes the diagnostic process partially subjective. Therefore, an automated approach that detects and segments nodules could improve performance on downstream tasks, such as risk stratification.Current deep learning architectures for segmentation are typically semi-automated because they are evaluated solely on images known to have nodules and do not assess ability to identify suspicious images. However, the proposed multitask approach both detects suspicious images and segments potential nodules; this allows for a clinically translatable model that aptly parallels the workflow for thyroid nodule assessment. The multitask approach is centered on an anomaly detection (AD) module that can be integrated with any U-Net architecture variant to improve image-level nodule detection. Ultrasound studies were acquired from 280 patients at UCLA Health, totaling 9,888 images, and annotated by collaborating radiologists. Of the evaluated models, a multi-scale UNet (MSUNet) with AD achieved the highest F1 score of 0.829 and image-wide Dice similarity coefficient of 0.782 on our hold-out test set. Furthermore, models were evaluated on two external validations datasets to demonstrate generalizability and robustness to data variability. Ultimately, the proposed architecture is an automated multitask method that expands on previous methods by successfully both detecting and segmenting nodules in ultrasound.

13.
IEEE Trans Biomed Eng ; 70(2): 401-412, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35853075

RESUMO

OBJECTIVE: Gadolinium-based contrast agents (GBCAs) have been widely used to better visualize disease in brain magnetic resonance imaging (MRI). However, gadolinium deposition within the brain and body has raised safety concerns about the use of GBCAs. Therefore, the development of novel approaches that can decrease or even eliminate GBCA exposure while providing similar contrast information would be of significant use clinically. METHODS: In this work, we present a deep learning based approach for contrast-enhanced T1 synthesis on brain tumor patients. A 3D high-resolution fully convolutional network (FCN), which maintains high resolution information through processing and aggregates multi-scale information in parallel, is designed to map pre-contrast MRI sequences to contrast-enhanced MRI sequences. Specifically, three pre-contrast MRI sequences, T1, T2 and apparent diffusion coefficient map (ADC), are utilized as inputs and the post-contrast T1 sequences are utilized as target output. To alleviate the data imbalance problem between normal tissues and the tumor regions, we introduce a local loss to improve the contribution of the tumor regions, which leads to better enhancement results on tumors. RESULTS: Extensive quantitative and visual assessments are performed, with our proposed model achieving a PSNR of 28.24 dB in the brain and 21.2 dB in tumor regions. CONCLUSION AND SIGNIFICANCE: Our results suggest the potential of substituting GBCAs with synthetic contrast images generated via deep learning.


Assuntos
Neoplasias Encefálicas , Gadolínio , Humanos , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Imagem de Difusão por Ressonância Magnética , Meios de Contraste
14.
AMIA Annu Symp Proc ; 2023: 1344-1353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38222341

RESUMO

For patients with thyroid nodules, the ability to detect and diagnose a malignant nodule is the key to creating an appropriate treatment plan. However, assessments of ultrasound images do not accurately represent malignancy, and often require a biopsy to confirm the diagnosis. Deep learning techniques can classify thyroid nodules from ultrasound images, but current methods depend on manually annotated nodule segmentations. Furthermore, the heterogeneity in the level of magnification across ultrasound images presents a significant obstacle to existing methods. We developed a multi-scale, attention-based multiple-instance learning model which fuses both global and local features of different ultrasound frames to achieve patient-level malignancy classification. Our model demonstrates improved performance with an AUROC of 0.785 (p<0.05) and AUPRC of 0.539, significantly surpassing the baseline model trained on clinical features with an AUROC of 0.667 and AUPRC of 0.444. Improved classification performance better triages the need for biopsy.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Ultrassonografia/métodos , Biópsia
15.
AMIA Annu Symp Proc ; 2023: 1218-1225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38222383

RESUMO

P300 event-related potential (ERP) signals are useful neurological biomarkers, and their accurate classification is important when studying the cognitive functions in patients with neurological disorders. While many studies have proposed models for classifying these signals, results have been inconsistent. As a result, a consensus has not yet been reached on the optimal model for this classification. In this study, we evaluated the performance of classic machine learning and novel deep learning methods for P300 signal classification in both within and across subject training scenarios across a dataset of 75 subjects. Although the deep learning models attained high attended event classification F1 scores, they did not outperform Stepwise Linear Discriminant Analysis (SWLDA) in the within-subject paradigm. In the across-subject paradigm, however, EEG-Inception was able to significantly outperform SWLDA. These results suggest that deep learning models may provide a general model that do not require subject-specific training and calibration in clinical settings.


Assuntos
Interfaces Cérebro-Computador , Aprendizado Profundo , Humanos , Eletroencefalografia/métodos , Potenciais Evocados P300 , Aprendizado de Máquina , Algoritmos
16.
J Neural Eng ; 19(6)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36541546

RESUMO

Objective.Intracranially-recorded interictal high-frequency oscillations (HFOs) have been proposed as a promising spatial biomarker of the epileptogenic zone. However, HFOs can also be recorded in the healthy brain regions, which complicates the interpretation of HFOs. The present study aimed to characterize salient features of physiological HFOs using deep learning (DL).Approach.We studied children with neocortical epilepsy who underwent intracranial strip/grid evaluation. Time-series EEG data were transformed into DL training inputs. The eloquent cortex (EC) was defined by functional cortical mapping and used as a DL label. Morphological characteristics of HFOs obtained from EC (ecHFOs) were distilled and interpreted through a novel weakly supervised DL model.Main results.A total of 63 379 interictal intracranially-recorded HFOs from 18 children were analyzed. The ecHFOs had lower amplitude throughout the 80-500 Hz frequency band around the HFO onset and also had a lower signal amplitude in the low frequency band throughout a one-second time window than non-ecHFOs, resembling a bell-shaped template in the time-frequency map. A minority of ecHFOs were HFOs with spikes (22.9%). Such morphological characteristics were confirmed to influence DL model prediction via perturbation analyses. Using the resection ratio (removed HFOs/detected HFOs) of non-ecHFOs, the prediction of postoperative seizure outcomes improved compared to using uncorrected HFOs (area under the ROC curve of 0.82, increased from 0.76).Significance.We characterized salient features of physiological HFOs using a DL algorithm. Our results suggested that this DL-based HFO classification, once trained, might help separate physiological from pathological HFOs, and efficiently guide surgical resection using HFOs.


Assuntos
Aprendizado Profundo , Epilepsia , Criança , Humanos , Eletroencefalografia/métodos , Convulsões , Encéfalo
17.
J Neuroimaging ; 32(6): 1153-1160, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36068184

RESUMO

BACKGROUND AND PURPOSE: Treatment of acute ischemic stroke is heavily contingent upon time, as there is a strong relationship between time clock and tissue progression. Work has established imaging biomarker assessments as surrogates for time since stroke (TSS), namely, by comparing signal mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) imaging. Our goal was to develop an automatic technique for determining TSS from imaging that does not require subspecialist radiology expertise. METHODS: Using 772 patients (66 ± 9 years, 319 women), we developed and externally evaluated a deep learning network for classifying TSS from MR images and compared algorithm predictions to neuroradiologist assessments of DWI-FLAIR mismatch. Models were trained to classify TSS within 4.5 hours and performance metrics with confidence intervals were reported on both internal and external evaluation sets. RESULTS: Three board-certified neuroradiologists' DWI-FLAIR mismatch assessments, based on majority vote, yielded a sensitivity of .62, a specificity of .86, and a Fleiss' kappa of .46 when used to classify TSS. The deep learning method performed similarly to radiologists and outperformed previously reported methods, with the best model achieving an average evaluation accuracy, sensitivity, and specificity of .726, .712, and .741, respectively, on an internal cohort and .724, .757, and .679, respectively, on an external cohort. CONCLUSION: Our model achieved higher generalization performance on external evaluation datasets than the current state-of-the-art for TSS classification. These results demonstrate the potential of automatic assessment of onset time from imaging without the need for expertly trained radiologists.


Assuntos
Isquemia Encefálica , Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Fatores de Tempo , Fibrinolíticos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Imagem de Difusão por Ressonância Magnética/métodos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico
18.
Biol Sex Differ ; 13(1): 15, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410392

RESUMO

BACKGROUND: Sex-based differences are crucial to consider in the formulation of a personalized treatment plan. We evaluated sex-based differences in adherence and remotely monitored biometric, psychometric, and biomarker data among patients with stable ischemic heart disease (IHD). METHODS: The Prediction, Risk, and Evaluation of Major Adverse Cardiac Events (PRE-MACE) study evaluated patients with stable IHD over a 12-week period. We collected biometric and sleep data using remote patient monitoring via FitBit and psychometric data from Patient-Reported Outcomes Measurement Information System (PROMIS), Kansas City Cardiomyopathy (KCC) and Seattle Angina Questionnaire-7 (SAQ-7) questionnaires. Serum biomarker levels were collected at the baseline visit. We explored sex-based differences in demographics, adherence to study protocols, biometric data, sleep, psychometric data, and biomarker levels. RESULTS: There were 198 patients enrolled, with mean age 65.5 ± 11 years (± Standard deviation, SD), and 60% were females. Females were less adherent to weekly collection of PROMIS, KCC and SAQ-7 physical limitations questionnaires (all p < 0.05), compared to males. There was no difference in biometric physical activity. There was a statistically significant (p < 0.05) difference in sleep duration between sexes, with females sleeping 6 min longer. However, females reported higher PROMIS sleep disturbance scores (p < 0.001) and poorer psychometric scores overall (p < 0.05). A higher proportion of males had clinically significant elevations of median N-terminal pro-brain natriuretic peptide (p = 0.005) and high-sensitivity cardiac troponin levels (p < 0.001) compared to females. CONCLUSIONS: Among females and males with stable IHD, there are sex-based differences in remote monitoring behavior and data. Females are less adherent to psychometric data collection and report poorer psychometric and sleep quality scores than males. Elevated levels of biomarkers for MACE are more common in males. These findings may improve sex-specific understanding of IHD using remote patient monitoring.


Assuntos
Isquemia Miocárdica , Idoso , Biomarcadores , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/diagnóstico , Psicometria , Inquéritos e Questionários
19.
Brain Commun ; 4(1): fcab267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35169696

RESUMO

Intracranially recorded interictal high-frequency oscillations have been proposed as a promising spatial biomarker of the epileptogenic zone. However, its visual verification is time-consuming and exhibits poor inter-rater reliability. Furthermore, no method is currently available to distinguish high-frequency oscillations generated from the epileptogenic zone (epileptogenic high-frequency oscillations) from those generated from other areas (non-epileptogenic high-frequency oscillations). To address these issues, we constructed a deep learning-based algorithm using chronic intracranial EEG data via subdural grids from 19 children with medication-resistant neocortical epilepsy to: (i) replicate human expert annotation of artefacts and high-frequency oscillations with or without spikes, and (ii) discover epileptogenic high-frequency oscillations by designing a novel weakly supervised model. The 'purification power' of deep learning is then used to automatically relabel the high-frequency oscillations to distill epileptogenic high-frequency oscillations. Using 12 958 annotated high-frequency oscillation events from 19 patients, the model achieved 96.3% accuracy on artefact detection (F1 score = 96.8%) and 86.5% accuracy on classifying high-frequency oscillations with or without spikes (F1 score = 80.8%) using patient-wise cross-validation. Based on the algorithm trained from 84 602 high-frequency oscillation events from nine patients who achieved seizure-freedom after resection, the majority of such discovered epileptogenic high-frequency oscillations were found to be ones with spikes (78.6%, P < 0.001). While the resection ratio of detected high-frequency oscillations (number of resected events/number of detected events) did not correlate significantly with post-operative seizure freedom (the area under the curve = 0.76, P = 0.06), the resection ratio of epileptogenic high-frequency oscillations positively correlated with post-operative seizure freedom (the area under the curve = 0.87, P = 0.01). We discovered that epileptogenic high-frequency oscillations had a higher signal intensity associated with ripple (80-250 Hz) and fast ripple (250-500 Hz) bands at the high-frequency oscillation onset and with a lower frequency band throughout the event time window (the inverted T-shaped), compared to non-epileptogenic high-frequency oscillations. We then designed perturbations on the input of the trained model for non-epileptogenic high-frequency oscillations to determine the model's decision-making logic. The model confidence significantly increased towards epileptogenic high-frequency oscillations by the artificial introduction of the inverted T-shaped signal template (mean probability increase: 0.285, P < 0.001), and by the artificial insertion of spike-like signals into the time domain (mean probability increase: 0.452, P < 0.001). With this deep learning-based framework, we reliably replicated high-frequency oscillation classification tasks by human experts. Using a reverse engineering technique, we distinguished epileptogenic high-frequency oscillations from others and identified its salient features that aligned with current knowledge.

20.
Surg Innov ; 29(3): 353-359, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33517863

RESUMO

Purpose. See-through head-mounted displays (HMDs) can be used to view fluoroscopic imaging during orthopedic surgical procedures. The goals of this study were to determine whether HMDs reduce procedure time, number of fluoroscopic images required, or number of head turns by the surgeon compared with standard monitors. Methods. Sixteen orthopedic surgery residents each performed fluoroscopy-guided drilling of 8 holes for placement of tibial nail distal interlocking screws in an anatomical model, with 4 holes drilled while using HMD and 4 holes drilled while using a standard monitor. Procedure time, number of fluoroscopic images needed, and number of head turns by the resident during the procedure were compared between the 2 modalities. Statistical significance was set at P < .05. Results. Mean (SD) procedure time did not differ significantly between attempts using the standard monitor (55 [37] seconds) vs the HMD (56 [31] seconds) (P = .73). Neither did mean number of fluoroscopic images differ significantly between attempts using the standard monitor vs the HMD (9 [5] images for each) (P = .84). Residents turned their heads significantly more times when using the standard monitor (9 [5] times) vs the HMD (1 [2] times) (P < .001). Conclusions. Head-mounted displays lessened the need for residents to turn their heads away from the surgical field while drilling holes for tibial nail distal interlocking screws in an anatomical model; however, there was no difference in terms of procedure time or number of fluoroscopic images needed using the HMD compared with the standard monitor.


Assuntos
Procedimentos Ortopédicos , Fluoroscopia , Monitorização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA